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J. Phys. A :  Math. Gen., Vol. 12, No. 4, 1979. Printed in  Great Britain 

Dynamical symmetries in a spherical geometry I1 

Howard I Leemont 
Department of Physics, University of Edinburgh, James Clerk Maxwell Building, The 
King’s Buildings, Mayfield Road, Edinburgh EH9 352, U.K. 

Received 13 September 1978 

Abstract. The quantum mechanical Coulomb and isotropic oscillator problems in an 
N-dimensional spherical geometry, which were shown in the previous paper to possess the 
dynamical symmetry groups SO(N + 1) and SU(N)  respectively as classical systems, are  
analysed by the method used by Pauli to find the energy eigenvalues of the hydrogen atom. 
This analysis is carried through completely for N = 3 to obtain energy eigenvalues and 
recurrence relations among energy eigenfunctions. It is shown that Pauli’s method is 
equivalent to Schrodinger’s method of solving the radial Schrodinger equation by factorisa- 
tion of the second order differential operator. The latter method is used to find the energy 
eigenvalues in N dimensions, and the corresponding eigenfunctions are obtained in closed 
form. 

1. Introduction 

The Coulomb and isotropic oscillator problems in an N-dimensional spherical 
geometry have been considered in a previous paper (Higgs 1978). There it is shown that 
the classical systems possess the dynamical symmetry groups SO ( N  + 1) and SU(N) 
respectively. The first of these groups is generated by the angular momentum L,, and 
the generalisation of the Runge-Lenz vector RI,  while the second is generated by Lii and 
the generalisation of the Fradkin tensor N,,. These results are demonstrated explicitly 
by rewriting the classical Poisson bracket algebras in the required forms. This has not 
been done for the commutator algebras of the quantum mechanical operators (except in 
two dimensions) so that the group theoretical techniques used in the familiar flat-space 
problems are not applicable. 

In this paper an alternative technique, due to Pauli (1926), is shown to provide the 
means of solution of the eigenvalue problems for these systems. In each case the 
algebra of the generators is replaced by the algebra of the matrix elements of the 
generators in a basis of energy and angular momentum eigenstates. The values of the 
matrix elements are obtained and from these the energy eigenvalues are found. Further, 
the technique can be extended to provide recurrence relations which generate the 
energy eigenfunctions completely. In $ 2 the energy eigenvalues will be found for 
N = 3. In 8 3 the recurrence relations for the eigenfunctions will be found. In § 4 it is 
shown that this method is equivalent to a method of Schrodinger (1940) for solving 
some types of differential equations and the latter is used to find the energy eigenvalues 
and the recurrence relations in N dimensions. In § 5 these recurrence relations are used 
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to generate the eigenfunctions in closed form. In 0 6 it is shown that the energy 
eigenstates form bases for representations of the two symmetry groups although an 
explicit construction has not been achieved for either group. 

2. The energy eigenvalues for N = 3 

When working with angular momentum eigenstates it is the spherical components of an 
operator rather than its Cartesian components which are most appropriate. These can 
be defined from the Cartesian components by 

Ro=R3 ( 1 )  
and 

R,l = T2-’/’(R1 f iR2) 

for any vector Ri (and similarly for any pseudo-vector L,) and by 

NO = (31/2/2)N33, 

N,1 = r2-1/2(N13 f iN23) 
and 

(3)  

(4)  

N*2 = 8-’/*(N11 - NZ2 f 2iN12) ( 5 )  

for any symmetric traceless tensor of rank 2 ,  Nil. 
The basis states for matrix elements of these operators, denoted lE, I ,  m), are the 

familiar eigenstates of H, L z  and Lo. These matrix elements can be separated by means 
of the Wigner-Eckart theorem (e.g. Edmonds 1957) into a coefficient containing the m 
dependence and a reduced matrix element involving only E and 1. It is the algebra of 
these reduced matrix elements which we will be able to solve. 

The equations which are needed are obtained from the commutation relations given 
by Higgs (1979 equations (17a), (33a) and (37)) and from the orthogonality conditions 

The equations can all be written in spherical components but the reduction of the matrix 
elements allows us to choose only four. These are 

N-,L+I +N+1L-l-(2/31/2)NoLo=3w-1(2H -AL2+iA)Lo. (11) 
t These equations correspond to the classical result that the angular momentum vector is normal to the plane 
containing the orbit and can be obtained by direct calculation from the definitions. 



Dynamical symmetries in a spherical geometry 11 49 1 

Now consider these two pairs of equations separately. Equation ( 9 )  provides the 

( 1 2 )  
result? 

E, I "  '"'/lRIlE, I )  = 0 unless 1' ' .  ' = 1 * 1 

while equation (8) leads to 

I(E, IIIRIIE, 1 + 1)12/(1 + 1)- l(E, 1 - l ~ ~ R ~ ~ E ,  1)12/1 = (21 + 1)[2E - 2Al(l+ l)]. 

I(E, 1 ~ ~ R ~ ~ E ,  1 + 1)12/(1 + 1) = C+2E(1+ 1 ) 2 - d ( 1 + 2 ) ( 1  + l )2 .  

( 1 3 )  
The latter is a difference equation which has a general solution 

(14)  

The constant C is found to be k 2  by evaluating the matrix elements of R 2  which has 
been found by Higgs (1978 equation (18a)) .  

As the value of I increases the right-hand side of (14)  becomes negative while the 
left-hand side is non-negative. A state of higher I can always be generated from any 
state IE, I ,  m )  by means of 

R,lE,I,m)=(E, l + l ,  m+uIR,IE,I,m)jE,I+l,m+u) 

+ ( E ,  1 - 1, m + u/R,/E, 1, m)lE, 1 - 1 ,  m + u) (15) 

unless there exists an integer n such that 

(E,  nllRIIE, n + 1) = 0. 

This leads immediately to the result that the energy has the discrete values 

Conversely, for every non-negative integer n, the substitution of (17) into (14) shows 
that n is the maximum value of a sequence of 1 values. Thus all the energy eigenvalues 
have been found for the Coulomb potential. 

Equations (10) and ( 1 1 )  can be used in a similar manner for the oscillator potential. 
Equation (1 1) gives us 

while equation (10) leads to the result 

81(E IIINIIE, 1 + 2)12 
(21 +4)(21+ 3)(21+ 2 )  

12(21- 1) (E,  1llNl\E, 1)2 A 2  2A 
- ( 1 - 7 + 7 [E  - $ A I ( /  + l)]) - - 

(21 + 3 )  (21 + 2)(21+ 1)(21) 4w 3w 

2h (21 - - 3)(E, 1IINIIJ5 1 )  
3'I2w [(21+ 3)(21+ 2)(21+ 1)(21)(21- 1)]1'2 

-- 

- [E - f A  ( l 2  + 3 1 + +)I2 - ( w 2  + :A ' ) ( I  + 2)' - 
w2(1 + 5)' 

The following equations are obtained using the definitions of Edmonds (1957). 
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on the substitution of (19). The right-hand side of ( 2 1 )  can be rewritten as 

(22 )  
3 2E 4 ( ~ ~ + i h ~ ) ( l + f ) ~  

A 2  { [(1+32-(4+h)] h 2  
- 

w2(21 + 3 ) 2  

where the expression in the bracket is a quadratic in ( I  + 1)’ which becomes negative as 1 
increases. States of higher I can always be constructed by means of 

Nu~E,l,m)=(E,l+2,m+~~N,~E,l,m)~E,l+2,m+u) 
+(E,  1, m +ulN,IE, I ,  m)lE, I ,  m +a)  

+ ( E , l - 2 , m + a ~ N u ~ E , 1 , m ) ~ E , l - 2 , m + a )  

unless there exists an integer n such that 

(E, nIINIlE, n + 2 )  = 0. (24) 

Combining (24) with ( 2 1 )  gives 

E, = k”’(n + $ ) + h ( n 2 + 3 n  +$) 

where 
2 1 2  k = o  + T A  

and the energy eigenvalues for the oscillator potential are found.? The same reasoning 
as before shows that an eigenvalue exists for every non-negative n. 

Having found the eigenvalues for both potentials it is useful to evaluate the matrix 
elements in terms of the quantum numbers. If the definition 

( 2 7 )  (n ,  1 + lllRIln, 1) = ( 1  + V2f,,r 

l f n . r 1 2  = - l ) (n  + 1 + 2 ) { [ ~ ~ / ( n  + A (1 + 1)2}. (28) 

is made then 

As well, the definition 

[(21+4)(21+3)(21 +2)]1’2 cl, 1 2 * 2 1 / 2 0  (a, W I I U ,  1 + 2 )  = 

3. Eigenfunction recurrence relations for 1%‘ = 3 

In the coordinate representation the momentum p ,  must be replaced by an hermitian 
differential operator. The eigenstates become eigenfunctions on the surface of the 
sphere and they can be chosen to satisfy the invariant normalisation 

[ dx g* ’2$* (x)~(x)  = 1 (31) 

f Lakshmanan and Eswaran (1975) have found this result by solving the Schrodinger equation. Their 
Hamiltonian differs from that of Higgs (1979) by the constant term :A, 
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where 0 < r < CO and 

g ( r )  = (1 + A ~ T * ) - ~  

is the determinant of the metric of the surface. With respect to this normalisation the 
hermitian momentum operator is 

= -ig-1/4atg1/4 (33) 

This can be substituted into the constants RI  and NI,  to produce differential operators 
for use in equations (15) and (23). 

Using spherical polar co-ordinates the wave functions can be separated into a radial 
part and an angular part because of the SO(3) symmetry each Hamiltonian possesses. 
Introducing the radial variable ,y (Higgs, 1979), where 

tan x = ~ " ~ r ,  (34) 

In, 1, m)=Xn, / (X)Yh , (~ ,  41, (35) 

this separation is 

which can be substituted into either (15) or (23). The orthogonality conditions for the 
spherical harmonics and some associated properties (e.g. Edmonds 1957) can be used 
to eliminate the angular dependence from these equations leaving only recurrence 
relations involving the radial wave functions. Here it is necessary to choose the phases 
of the reduced matrix elements in a consistent manner as they have not been specified. 

After this is done the recurrence relations for the oscillator potential become 

4. Generalisation to N dimensions 

The eigenvalue problems have been solved for N = 2 (Higgs 1979) and for N = 3 earlier 
in this paper. It should be apparent that considerable difficulty will arise in extending 
the methods to higher dimensions. However, there is an alternative method based on 
the Schrodinger equation. The free-particle equation can be written down by introduc- 
ing the co-ordinate representation into the quantised Hamiltonian of Higgs (1979). If 
we use hyperspherical polar co-ordinates (e.g. ErdClyi er a1 1953b, p 233) then the 
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equation is separable into a radial equation and an angular equation, the solution of 
which is a hyperspherical harmonic. The introduction of the two radial potentials does 
not alter this separability. 

This lengthy calculation finally gives the radial Schrodinger equation for the 
Coulomb potential 

{d;+(N-l)  co txa , - l ( l+N-2)  C S C ~ X + ~ &  CO~X+~E,, /A}X,, ,~(X)=O (40) 

where 
& = p/A112 

while for the oscillator potential it is 

{ d i + ( N -  1) c o t ~ a , - ~ ( I + N - 2 ) c s c 2 ~ - ( w 2 / A 2 )  tan2~+2E,/A}X,, .r(*)=0. (42) 

The first equation falls within a class of equations considered by Schrodinger (1940) 
and later by Infeld and Hull (1951). The method of solution used here is the same 
although the details are different. 

If the differential operators 0, and 0- are defined by 

0, = a, - 1 cot * + & / [ l +  1(N - 1)l 

0- = -a, - ( I  + N  - 1) cot * + & / [ I  +i(N - 113 

and 

(43) 

(44) 

then equation (40) can be written in two ways: 

O+O-Xn,,+l - { & 2 / [ l  +:(N - 1)12- 1(1  + N  - 1)+ 2E,,/A}Xn,/+1 = 0 (45) 

and 

O-O+X,, ,-{&2/[1+i(N- 1) I2- l (1+N-  1)+2E,,/A}Xn,~ = O .  (46) 

It is clear that O-Xn,l+l is a solution of the second equation while O+X,,, is a solution of 
the first so that the operators raise and lower the values of 1. 

If the eigenfunctions are assumed to be normalised according to the invariant 
normalisation (3 l ) ,  where 

g ( r ) = ( l + A r 2 ) - " - '  (47) 

is the generalisation of (32) and the hyperspherical harmonics are normalised to unity 
then the radial wave functions must satisfy 

With respect to this normalisation the above operators are adjoint, therefore the 
constant term in (45) and (46) must be non-negative. By the same argument as was used 
in § 2 there must exist an integer n such that this term is zero when 1 = n. Therefore 

1 1 
2 

+ - h n ( n + N - l )  E, = _ _  K 2  
2 ( n  + f(N - 1))2 (49) 

for n = 0, 1, 2, . . . . This solution corresponds to the previous solutions for N = 2 and 
N = 3 .  
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The action of the raising and lowering operators can now be written as 

O+xn,i = -Ifn,lI/{A ‘ / 2 [ l + 8 N -  1)I}zn,1+1 

O-xn,i+l = -Ifn,/l/{A ’/’[/ + $ ( N -  1)IIxn, /  

(50)  

and 

( 5 1 )  
where 

= A ( n  - l ) (n  + I  + N  - l ) { & 2 / [ n  +&N- 1)]’+[1 +$AN- l)]’} ( 5 2 )  

which are the generalisations of the equations obtained in § 3. 

However we can still define the operators 
The oscillator equation (42) is not one of those considered by Schrodinger (1940). 

6 + = ( 2 1 + N )  cotxa,  - (2l+N)l  Cot2x-l(I+N-1)+2En/A (53) 

O- = -(21+N) cot xa, - ( 2 l + N ) ( l + N )  Cot2 x - ( l +  1)(1+N)+2En/A 

and 

(54) 

such that equation (42) can be written as 

6+6-Xn,,+2-{[2En/A - ( /+  1)(1+N)][2En/A - l ( / + N -  1 ) ] - ( 2 1 + N ) 2 ~ 2 / A 2 } X , , , r + 2  

= O  ( 5 5 )  
and as 

O-6+Xn,, -{[2En/A - ( I  + 1)(1 +N)][2En/A - 1 ( 1  + N  - 1)]-(21 + N ) ’ w 2 / h 2 } X n , /  

= 0. ( 5 6 )  
Once again we have raising and lowering operators. The X,,,, will satisfy (48) but they 
will also satisfy the condition that 

r r / 2  lo dx(sin x)Iv-’ csc2 ,yXt,,,X,,, = 0 (57) 

if I’ f 1. This can be shown using equations (42) and (48) and it in turn can be used to 
demonstrate that the raising and lowering operators are adjoint. Therefore the 
constant term in (55) and (56 )  is non-negative. By the usual arguments the energy 
eigenvalues are 

( 5 8 )  E,, = ( n  +iN)k”2+iA(n2+Nn + i N )  

which agrees with the results found for N = 2 and N = 3. 
Finally the action of the raising and lowering operators is 

b+Xn,, = -[(21 +N)ICn,/I/A]Xn,,+2 (59 )  

b-X, , ,+z  = -[(21 +~)IG,/I/AIX,,.l (60) 

and 

where 

( l + i N ) 2 / C n , r / 2 = A 2 ( ~  -I)(n+l+N)[k’’2/A + i ( n  - l ) ] [ k ” 2 / A  + i ( n  +l+N.)]  

which corresponds to that obtained in § 3 for N = 3. 
(61 )  
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5. Calculation of the eigenfunctions 

We can now make use of the raising and lowering operators to compute the eigen- 
functions by noting that for both sets of eigenfunctions the action of the raising operator 
on the state I = n produces a first order differential equation which can be solved easily. 
From this state the other states can be generated by successive applications of the 
lowering operator. This technique is commonly used to generate spherical harmonics 
(Edmonds 1957). However, the difficulty here arises in writing the eigenfunctions in a 
closed form. These will now be obtained. 

5.1. The oscillator potential 

The recurrence relations (59)  and (60) can be greatly simplified by the definitions 

(cos x)ki’2’A +Tzfl,l (62)  - I  / + N - 2 J X.1 = 4 . i  (sin x )  
and 

With these (60) becomes 

Z n , / - 2 ( X )  = csc2 x((21 +Ar - 4 )  cot xa, 
- ( n  + / + N - 2 ) ( 2 / ~ ” ~ / A  + n - / + 2)}Z,,~(x) 

while for I = n (59)  becomes 

{a, - (2n  + N - 2)  cot x}Zn., (x) = 0 

which has the solution 
( 2  n *’V - 2 I Zn.,(x) = (sin x) 

(64)  

If Xn,n is normalised according to (48)  then all the other eigenfunctions will be 
correctly normalised by means of (63) .  It remains therefore to compute the other Z,,J 
from Zfl,n. It can be shown by induction that 

where 

At this point we can change to the variable 

z = sin2* 

and prove the following result 
(d ,d~)D[~t (2n+n~2D-2J  ( 1  - z ) k l  Z / A - D ]  
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When the normalisation constant is evaluated the result for the radial eigenfunction is 

which can in turn be written as 

using the hypergeometric function relations of ErdClyi et a1 (1953a, p 101). 

5.2. The Coulomb potential 

It will be shown here that the recurrence relations (50) and (51) generate radial 
eigenfunctions of the form 

This certainly satisfies the equation 

6 + L  = 0 

so there remains to be proven that it satisfies (51). 
The first step in this process is to prove that 

D - S  ( S=O f b2' r = O  1 (-l)rGFsn (tan x)2r+2S 
D D - S  

- c @2s+1 c (-I)'H?,' (tan x ) ~ ~ + ~ ~ + ~  
s=o r = O  

(77) 
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and 

[(sin x)' ( d / d ~ ) ] ~ ~ " [ ( s i n  , y )2n-4D+N-3  exp(-bx)I 

(sin X ) 2 n - Z D + N - 2  (cos ,ylZD+l exp(-/&) 
- (2n + N - 2 0 - 3 ) !  - 

(2n  + N - 2)! 
D - S  

X (  9 bZs ( - l ) rE~~n( t anX)2r+2s  

- s = o  c bZS+l r = O  1 (-l)'F:in (tan x ) ' " ' ~ + ~  

S=O r = O  

D D-S 

where 

(79) 
1 ( 2 0 ) !  D n  ( 2 n + N - 2 ) !  

g,s '*' ( r  + S ) !  ( 2 0  - 2 r - 2 S ) !  (2n  - 4 0  + N  +2r+2S -2)! '  
GD." = ~ 

1 ( 2 0 ) !  (2n + N - 2)!  
h ?in HFs" = ~ 

( r + S ) !  ( 2 0  -2r -2s - l ) !  (2n - 4 0  + N + 2 r  +2S - l ) ! '  

(81) 
1 ( 2 0  + l ) !  (2n + N - 2 ) !  

(2n  - 4 0  + N + 2 r  +2S  -4)! '  g:s"-' = ~ 

( r  + S ) !  ( 2 0  - 2r - 2s + l ) !  

1 (20 + ' 1 '  h52;n-l ( 2 n + N - 2 ) !  
( r  + S ) !  ( 2 0  - 2r - 2 S ) !  (2n  - 4 0  + N + 2 r  +2S -3 ) ! '  

and where 

and 

( r + S ) !  ( r + S ) !  ( 2 t + 2 S ) !  
r = O  ( t + S ) !  ( t + S ) !  (2r+2S+1)!  

h:i"= ~- 

This can be done by noting that 

[(sin ,y)'(d/d~)]'~''{(sin x ) ~ ~ + ~ - ~ ~ - ~  exp(-bx)) 

exp(-bx)) 

and 
[(sin ~ ) ~ ( d l d x ) ]  2D+2 {(sin x ) ~ ~ + ~ - ~ ~ - ~  

can each be written in two different ways. This will provide relations involving the 
coefficients which are satisfied by those given here. 

The second step is to substitute (77)  and (78)  into (73)  and prove that they satisfy the 
recurrence relation. Once again this will produce a number of relations involving the 
coefficients given in equations (79)  to (82)  which can be reduced to two equations 
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involving the subsidiary coefficients given in equations (83) to (85 ) ,  these being 

(86) D.n-1 - D n  
g,.s - g,s - (r  + S)g% 

The equations can be proven by induction on S.  
The constants A,,,[ can be evaluated from An,n using (74) while A,,, can be 

evaluated by normalising xn,n according to (48). Thus the proof that the radial 
eigenfunctions for the Coulomb potential have the form (73) is complete. 

6. The dynamical symmetry groups of the quantum mechanical system 

6.1. The Coulomb problem 

For a given energy eigenvalue E,, the possible eigenvalues of $L,,L,, are 1(1+  N - 2) 
where 1 = 0, 1, . . . , n. Therefore, as for the n-th discrete eigenvalue when A = 0, the 
corresponding energy eigenspace carries a direct sum of those irreducible represen- 
tations of SO(N)  labelled (1,  O”-’) (Boerner 1963) for 1 = 0, 1, . . . , n, where N = 21, if N 
is even and N = 21, + 1 if N is odd.: This is precisely the SO(N)  content of the 
irreducible representation of SO(N + 1) labelled (n, O U - ’ ) ,  where N = 2 u  - 1 if N is odd 
and N = 2 u  if N is even. On this representation, the second order Casimir operator C 
of SO(N + 1) takes the value n ( n  + N - 1) (Perelemov and Popov, 1966b). It follows 
that there exist hermitian operators M, i = 1,2,  . . . , N which, together with the L,,, 
generate in each energy eigenspace the corresponding representation of SO(N + 1). 
These operators therefore satisfy 

[H, MI1 = 0 (90) 

H = $hC -$/,.’[€ +$(N - 1)2]-1 

and, as can be seen by comparing the eigenvalues of H in equation (49) and of C above, 

(91) 

(c.f. Higgs 1979, equation (26a)), where 

c = M,M, + +L,,L,,. (92) 

It can be seen from comparing (89) and (8) that it is not a straightforward matter to 
construct MI from RI when A Z 0, and indeed we have not been able to identify MI 
explicitly except for N = 2 (Higgs 1979). 

6.2. The Oscillator problem 

Similar considerations apply here except that the possible eigenvalues of $LijLli are 
1(1+ N -2) where 1 = n, n - 2 , .  . . , 1 or 0. Therefore the energy eigenspace carries a 

t The case N = 2 is special. There the representations of SO(2) which occur are those labelled ( I )  for 
l = n, n - 1, . . . , - n forming a basis for the representation ( n )  of SO(3) (Higgs, 1979). 
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direct sum of the ( I ,  O"-') representations of SO(N) where 1 = n, n - 2, . . . , 1 or 0.t  This 
is the SO(N) content of the irreducible symmetric representation of SU(N) labelled 
(n, O N - 2 )  (Hamermesh 1962), on which the second order Casmir operator C of SU(N) 
takes the value n(n +N) (Perelemov and Popov, 1 9 6 6 ~ ) .  Therefore there exist 
hermitian operators ki,, symmetric in the indices and traceless, which, together with the 
L,,, generate these representations of SU(N). These operators satisfy 

[Lip k k l ]  = i ( - a , k k i l  - 6 l l f i t k  +aik&/  + a i l&k) ,  

[Si,, k k l l  = i(S,kLd + a / & i k  +aikL,l + ai/L/k), 

(93) 

(94) 

(cf Higgs, 1979, equation (47a)), where 

4(1 - N-')C = Ni,Ni, + L,,L,,. (97) 

Once again we have not been able to construct these ~ 1 1  from the NI, introduced by 
Higgs (1 979). 

7. Discussion 

Higgs (1979) has demonstrated that, classically, the constants of the motion associated 
with the Coulomb and oscillator potentials on a sphere can be written in a form 
exhibiting explicitly the dynamical symmetry groups. He has also shown that it can be 
done quantum-mechh,iically in two dimensions. It has not been done more generally 
because of the problems associated with the ordering of non-commuting operators. 
However it has been shown in this paper that these problems can be avoided by 
considering the matrix elements of the operators. Further, it has been shown that there 
is an alternative method due to Schrodinger (1940) which further reduces the complex- 
ity of the problem. Thus it is clear that even though the symmetries can be demon- 
strated only indirectly, they have provided a powerful technique for solving the two 
problems. 
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